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Abstract 

This study considers heat and mass transfer of viscous, incompressible and electrically 

conducting fluid with viscous dissipation, Soret and thermal radiation. The coupled partial 

differential equations for momentum, energy and concentration were transformed into 

ordinary differential equations by assuming purely oscillatory flow. The resulting equations 

were then solved analytically. Using realistic values for the parameters entering the problem, 

the solutions were displayed graphically and discussed. The results show that velocity, 

temperature and concentration were appreciably influenced by the magnetic field, Soret, 

permeability, thermal radiation, Eckert number and Reynolds number. It is noted that Reynolds 

number and permeability parameter enhances the velocity while magnetic field and thermal 

radiation decreases the velocity. The Eckert number increases the temperature while the 

Prandtl number decreases it. Magnetic field, Soret and Schmidt number enhance the 

concentration. The Eckert number increases both heat and mass transfer rates. 

 

Keywords: Magnetohydrodynamics, thermal radiation, Soret, viscous dissipation, porous 

medium. 

 

1. Introduction 

The flow of fluid through porous medium past vertical plate especially in heat transfer 

situations is common in nature and has many applications in science and engineering. The 

heating of rooms and buildings, general cooling system design, heat exchangers are some 

examples. Heat transfer by thermal radiation is important when concerned with higher 

operating temperatures, more so, the interplay of magnetic field and thermal radiation in porous 

medium have useful applications in astrophysics, geophysical fluid dynamics, radio 

propagation through the ionosphere, MHD pumps, nuclear power plants, gas turbines and space 

technology. 

 

Kim (2000) studied unsteady MHD convective heat transfer over a vertical porous plate with 

variable suction. Pal (2013) considered Hall current and MHD effects on an unsteady stretching 

permeable surface with thermal radiation.  Abd El- Naby et al (2003) considered radiation 

effects on MHD free convection flow with variable surface temperature. Their study considered 

a finite difference solution to the problem. Hossain and Tekha (1996) studied the interaction of 

radiation with mixed convection flows past a vertical plate. Jha and Ajibade (2011) studied 

heat generation and absorption on natural convection between two infinite plates subjected to 

periodic heating.  At high Prandtl number, fluid viscosity due to temperature may affect flow 

characteristics and functioning of industrial machinery where lubrication is essential. The study 

of heat and mass transfer effect on MHD flow of a visco-elastic fluid with oscillatory suction 

and heat source was carried out by Mishra et al (2013). Bister and Emmanuel (1998) showed 

that viscous dissipation is a significant heat source in hurricanes and that it increases its 
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efficiency. The effects of viscous dissipation and radiation on the thermal boundary layer over 

a non-linearly stretching sheet was studied by Cortell (2008). Berletta and Rossi di Schio 

(2001) studied the influence of viscous dissipation in a vertical tube with uniform heat flux. 

Sonth et al (2002) considered heat and mass transfer in a visco-elastic flow with heat 

source/sink and viscous dissipation. Seth and Ansari (2010) considered the presence of thermal 

diffusion and heat convection flow past an impulsively moving vertical plate with ramped wall 

temperature. Raptis and Perdikis (2006) studied chemical reaction and magnetic effects in their 

work on viscous flow over a nonlinearly stretching. Patil et al (2013) studied chemical reaction 

effects on unsteady mixed convection boundary layer flow due to a nonlinearly stretching 

velocity. The use of perturbation analysis was employed by Pal and Talukdar (2010) to study 

MHD convective heat and mass transfer in a boundary layer slip flow with thermal radiation 

and chemical effects. Other important researches involving chemical reaction include 

Kandaswamy et al (2005) and Mahdy (2010). 

 

Thermophoresis or Soret is a condition observed in mixtures of mobile particles where different 

particles exhibit different responses to the forces of temperature gradient. This phenomenon 

has applications in electrostatic precipitation, separation of polymer particles in fluid flow 

fractionation. The studies of Ahmad (2010), Anghel and Tekhar (2000), Amos et al (2018) are 

relevant in this respect.  

The motion of conducting fluid across a magnetic field and the interaction arising therefrom 

generates mechanical forces which modify the flow of the fluid. Such interactions, most times, 

occur at high temperatures, hence the essence of magnetic field and thermal radiation. We also 

note that many transport processes exist in nature and in industrial applications in which heat 

and mass transfer occur as a result of combined buoyancy effects of diffusion and chemical 

reaction. Consequently, in this study we explore the effect of viscous dissipation on MHD 

convective flow with thermal radiation.  

 

2. Mathematical Formulation 

We consider the flow of an unsteady electrically conducting, viscous and incompressible fluid 

through two vertical porous plates which are infinite in length and at distance ‘𝑑′ apart. The 

Cartesian coordinate is introduced with the origin at the stationary plate with constant injection 

velocity𝑉. The 𝑥-axis is along the plate and the 𝑦-axis perpendicular to it. The other plate 

moves with uniform velocity 𝑈 and subjected to constant suction velocity 𝑉. A uniform 

magnetic field of strength 𝑩𝟎 is applied normal to the plates. The Reynolds number is assumed 

small such that the induced magnetic field is neglected. The physical properties of the fluid are 

functions of 𝑦′ and 𝑡′. Taking into account viscous dissipation heating within the fluid, the 

governing equations for the flow are; 

 
𝜕𝑣′

𝜕𝑦′ = 0           (1) 

𝜕𝑢′

𝜕𝑡′
+ 𝑣′ 𝜕𝑢′

𝜕𝑦′
= −

1

𝜌

𝜕𝑃′

𝜕𝑥′
+ 𝜈

𝜕2𝑢′

𝜕𝑦′2 − 𝜎𝐵0
2𝑢′ − 𝜈

𝑢′

𝐾
      (2) 

𝜕𝑇′

𝜕𝑡′
+ 𝑣′ 𝜕𝑇′

𝜕𝑦′
=

𝜅

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 −
1

𝜌𝑐𝑝

𝜕𝑞′

𝜕𝑦′
+

𝜇

𝜌𝑐𝑝
(

𝜕𝑢′

𝜕𝑦′
)

2

       (3) 

𝜕𝐶′

𝜕𝑡′ + 𝑣′ 𝜕𝐶′

𝜕𝑡′ = 𝐷
𝜕2𝐶′

𝜕𝑦′2 + 𝐷1
𝜕2𝑇′

𝜕𝑦′2        (4) 

where 𝑃′ is the pressure, 𝜌 is the density of the fluid, 𝜈 is kinematic viscosity, 𝑡 is time, 𝐾 is 

the permeability of the porous medium, 𝑐𝑝 the is specific heat capacity at constant pressure, 

𝐷is mass diffusivity, 𝑞′ is the radiation heat flux. 

The boundary conditions are  
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𝑢′ = 0,   𝑇′ = 𝑇0
′ ,   𝐶′ = 𝐶0

′         (5) 

𝑢′ = 𝑈,   𝑇′ = 𝑇𝑤
′  ,   𝐶′ = 𝐶𝑤

′         (6) 

We assume that the fluid is optically thin with relatively low density such that the radiative 

heat flux is expressed as 
𝜕𝑞′

𝜕𝑦′
= 4𝛼2𝑇′          (7) 

Where 𝛼 is the mean radiation absorption coefficient. By the assumption of constant injection 

and suction velocity 𝑉, equation (1) integrates   

𝑣′ = 𝑉           (8) 

The non dimensional variables for the problem are’ 

𝑥 =
𝑥′

𝑑
,    𝑦 =

𝑦′

𝑑
,   𝑢 =

𝑢′

𝑈
,  𝑡 = 𝑡′ 𝑉

𝑑
,  𝑇 =

𝑇′−𝑇0
′

𝑇𝑤
′ −𝑇0

′ ,  𝐶 =
𝐶′−𝐶0

′

𝐶𝑤
′ −𝐶0

′ ,  𝑃 =
𝑃′

𝜌𝑈𝑉
 , 𝐾 =

𝐾′

𝑑2  (9) 

In view of equation (8) and the substitution of equation (9) into equations (2) – (6) we have: 
𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑦
= −

𝜕𝑃

𝜕𝑥
+

1

𝑅𝑒

𝜕2𝑢

𝜕𝑦2 −
𝑀2

𝑅𝑒
𝑢 −

1

𝐾𝑅𝑒
𝑢      (10) 

𝜕𝑇

𝜕𝑡
+

𝜕𝑇

𝜕𝑦
=

1

Pr 𝑅𝑒

𝜕2𝑇

𝜕𝑦2 −
𝑁2

𝑅𝑒
𝑇 +

𝐸𝑐

𝑅𝑒
(

𝜕𝑢

𝜕𝑦
)

2

      (11) 

𝜕𝐶

𝜕𝑡
+

𝜕𝐶

𝜕𝑦
=

1

𝑅𝑒 𝑆𝑐

𝜕2𝐶

𝜕𝑦2
+

𝑆𝑜

𝑅𝑒

𝜕2𝑇

𝜕𝑦2
    ,     (12) 

 

 

The boundary conditions becomes: 

𝑢 = 0,   𝑇 = 0,   𝐶 = 0     at  𝑦 = 0       (13) 

𝑢 = 1,   𝑇 = 1,   𝐶 = 1     at  𝑦 = 1       (14) 

where,  𝑆𝑐 =
𝜈

𝐷
 , 𝑃𝑟 =

𝜇𝑐𝑝

𝜅
 , 𝑁 = 2𝛼

𝑑

√𝐾
 , 𝑅𝑒 =

𝑉𝑑

𝜈
 ,  𝑆𝑜 =

𝐷1(𝑇𝑤
′ −𝑇0

′)

𝜈(𝐶𝑤
′ −𝐶0

′)
 , 𝐸𝑐 =

𝑈2

𝑐𝑝𝑇𝑜
 (15) 

 

3. Solution of the problem 

To solve equations (10) – (14) for purely oscillatory flow, we assume the solution in the form 

𝑢(𝑦, 𝑡) = 𝑢0(𝑦)𝑒𝑖𝜔𝑡,   𝑇(𝑦, 𝑡) = 𝜃0(𝑦)𝑒𝑖𝜔𝑡,  𝜙(𝑦, 𝑡) = 𝜙0(𝑦)𝑒𝑖𝜔𝑡,  −
𝜕𝑃

𝜕𝑥
= 𝑃𝑒𝑖𝜔𝑡           (16) 

where 𝜔 is the frequency of oscillation and 𝑃 is constant pressure.  

Substitution of equation (16) into equations (10) – (14), we obtain: 

𝑢0
′′ − 𝑅𝑒 𝑢0

′ − (𝑀2 +
1

𝐾
+ 𝑖𝜔 𝑅𝑒)𝑢0 = −𝑃𝑅𝑒     (17) 

𝜃0
′′ − 𝑅𝑒 𝑃𝑟 𝜃0

′ − (𝑁2 + 𝑖𝜔 𝑅𝑒 𝑃𝑟)𝜃0 = −𝐸𝑐 Pr  𝑢0
2     (18) 

𝜙0
′′ − 𝑅𝑒 𝑆𝑐 𝜙0

′ −  𝑖𝜔 𝑅𝑒 𝑆𝑐 𝜙0 = −𝑆𝑐 𝑆𝑜 𝜃0
′′     (19) 

Subject to: 

𝑢0 = 0,   𝜃0 = 0,   𝜙0 = 0     at  𝑦 = 0      (20) 

𝑢0 = 1,   𝜃0 = 1,   𝜙0 = 1     at  𝑦 = 1      (21) 

The solutions to equations (17) – (19) subject to (20) and (21)  and taking note of equation (16) 

are: 

𝑢 = {(−𝐷2 −
𝑃𝑅𝑒

𝐷1
) 𝑒𝛽1𝑦 + 𝐷2𝑒𝛽2𝑦 +

𝑃𝑅𝑒

𝐷1
} 𝑒𝑖𝜔𝑡     (22) 

𝑇 = {𝐸8𝑒𝛽3𝑦 + 𝐸9𝑒𝛽4𝑦 + 𝐸5𝑒2𝛽1𝑦 + 𝐸6𝑒(𝛽1+𝛽2)𝑦 + 𝐸7𝑒2𝛽2𝑦}𝑒𝑖𝜔𝑡   (23) 

𝐶 = {𝐸15𝑒𝛽5𝑦 + 𝐸16𝑒𝛽6𝑦 + 𝐸10𝑒𝛽3𝑦 + 𝐸11𝑒𝛽4𝑦 + 𝐸12𝑒2𝛽1𝑦 + 𝐸13𝑒(𝛽1+𝛽2)𝑦 + 𝐸14𝑒2𝛽2𝑦}𝑒𝑖𝜔𝑡    (24) 

 

where   

𝐷1 = 𝑀2 +
1

𝐾
+ 𝑖𝜔 𝑅𝑒,   𝛽1 =

𝑅𝑒−√𝑅𝑒2+4𝐷1

2
 , 𝛽2 =

𝑅𝑒+√𝑅𝑒2+4𝐷1

2
 , 𝐷2 =

𝐷1+𝑃 𝑅𝑒(𝑒𝛽1−1)

𝐷1(𝑒𝛽2−𝑒𝛽1)
  , 

𝐷3 = 4(𝑁2 + 𝑖𝜔 𝑅𝑒Pr),  𝛽3 =
𝑅𝑒𝑃𝑟+√(𝑅𝑒𝑃𝑟)2+𝐷3

2
 , 𝛽4 =

𝑅𝑒𝑃𝑟−√(𝑅𝑒𝑃𝑟)2+𝐷3

2
 , 
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𝐸5 =
−𝐸𝑐 Pr 𝛽1

2(−𝐷2−
𝑃𝑅𝑒

𝐷1
)

2

4𝛽1
2−2𝑅𝑒 Pr 𝛽1−𝐷3

 ,  𝐸6 =
−2𝐸𝑐 𝑃𝑟 𝐷2 𝛽2 𝛽1

(𝛽1+𝛽2)2−𝑅𝑒 Pr(𝛽1+𝛽2)−𝐷3
 ,   𝐸7 =

−2𝐸𝑐 𝑃𝑟 𝐷2
2 𝛽3 

2

𝛽2
2−2𝑅𝑒 Pr 𝛽2−𝐷3

 ,  

𝛽5 =
𝑅𝑒𝑆𝑐+√(𝑅𝑒𝑆𝑐)2+4(𝑖𝜔 𝑆𝑐)

2
 ,   𝛽6 =

𝑅𝑒𝑆𝑐−√(𝑅𝑒𝑆𝑐)2+4(𝑖𝜔 𝑆𝑐)

2
 , 𝐸8 = −𝐸9 − 𝐸5 − 𝐸6 − 𝐸7, 

𝐸9 = 1 + (𝐸5 + 𝐸6 + 𝐸7)𝑒𝛽3 − 𝐸5𝑒2𝛽1 − 𝐸6𝑒(𝛽1+𝛽2) − 𝐸7𝑒2𝛽2,      𝐸10 =
𝐸8𝛽3

2𝑆𝑐 𝑆𝑜

𝛽3
2−𝑅𝑒 Sc 𝛽3−𝑖𝜔𝑅𝑒 𝑆𝑐

   

, 

𝐸11 =
𝐸9𝛽4

2𝑆𝑐 𝑆𝑜

𝛽4
2−𝑅𝑒 Sc 𝛽4−𝑖𝜔 𝑅𝑒 𝑆𝑐

  , 𝐸12 =
4𝐸5𝛽1

2𝑆𝑐 𝑆𝑜

4𝛽1
2−𝑅𝑒 Sc 𝛽1−𝑖𝜔 𝑅𝑒 𝑆𝑐

 ,  

𝐸13 =
𝐸6(𝛽1+𝛽2)2𝑆𝑐 𝑆𝑜

(𝛽1+𝛽2)2−𝑅𝑒 Sc(𝛽1+𝛽2)−𝑖𝜔 𝑅𝑒 𝑆𝑐
 , 

𝐸14 =
4𝐸7𝛽2

2𝑆𝑐 𝑆𝑜

4𝛽1
2−𝑅𝑒 Sc 𝛽1−𝑖𝜔 𝑅𝑒 𝑆𝑐

    , 𝐸15 =  −𝐸16 − 𝐸10 − 𝐸11 − 𝐸12 − 𝐸13 − 𝐸14  , 

𝐸16 =
1+(𝐸10+𝐸11+𝐸12+𝐸13+𝐸14)𝑒𝛽5−𝐸10𝑒𝛽3−𝐸11𝑒𝛽4−𝐸12𝑒2𝛽1−𝐸13𝑒(𝛽1+𝛽2)−𝐸14𝑒2𝛽2

𝑒𝛽6  −  𝑒𝛽5
  

  

The skin friction, 𝐶𝑓 , the Nusselt number, 𝑁𝑢 and Sherwood number, 𝑆ℎ are given respectively 

as 

𝐶𝑓 = (
𝜕𝑢𝑜

𝜕𝑦
)

𝑦=0
= 𝛽1 (−𝐷2 −

𝑃𝑅𝑒

𝐷1
) + 𝐷2𝛽2      (25) 

𝑁𝑢 = (
𝜕𝜃0

𝜕𝑦
)

𝑦=0
= 𝐸8𝛽3 + 𝐸9𝛽4 + 2𝐸5𝛽1 + 𝐸6(𝛽1 + 𝛽2) + 2𝐸7𝛽2   (26) 

𝑆ℎ = (
𝜕𝜙0

𝜕𝑦
)

𝑦=0
= 𝐸15𝛽5 + 𝐸16𝛽6 + 𝐸10𝛽3 + 𝐸11𝛽4 + 𝐸122𝛽1 + 𝐸13(𝛽1 + 𝛽2) + 𝐸142𝛽2    (27) 

 

4. Discussion of Results 

Figure 1 shows the effect of magnetic field on velocity. The profiles indicate that increase in 

magnetic field decreases the velocity. Physically, the presence of magnetic field introduces the 

Lorentz force which acts against the flow, hence the decrease in velocity.. The influence of the 

Reynolds number on the velocity is shown in Figure 2. It is observed that increase in the 

Reynolds number enhances the velocity. Basically for large values of the Reynolds number, 

the inertial forces are predominant. The effect of the permeability of the medium on velocity is 

depicted in Figure 3. It shows that increase in the permeability increases the fluid flow. 

Physically this is possible as permeability is a property of the porous medium with its increase 

indicating the ability of the formation to transmit more fluid. Figure 4 depicts the effect of 

magnetic field on the temperature. The profile indicates that increase in the magnetic field 

results in increase in the temperature of the fluid. The magnetic field applied heats up the fluid 

thereby increasing the temperature. 

 

The effect of the Eckert number on the temperature distribution is shown in Figure 5. Increase 

in Eckert number show increase in the temperature of the flow field. This is because additional 

heat is added to the system by increasing the Eckert number. Figure 6 shows the influence of 

radiation on the temperature. The indication from the profile is that increase in thermal 

radiation decreases the temperature. Physically, large values of thermal radiation indicates an 

increase in dominance of conduction in the system hence decrease in the buoyancy force. The 

influence of the permeability of the medium on temperature is shown in Figure 7. It is observed 

that increase in permeability decreases the temperature. Increase in the permeability pushes 

more amount of fluid into the flow field hence the flow field suffers a decrease in temperature. 

Figure 8 illustrates the effect of the Prandtl number on the temperature. Increase in the Prandtl 

number decreases the temperature. The increase in the Prandtl decreases thermal conductivity 

while increasing the viscosity, this has the effect of decreasing the thermal boundary layer 
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thickness hence the decrease in temperature. The profile indicates that the effect of increase in 

Prandtl number is more pronounced far from the plate. 

 

Figure 9 depicts concentration profile for various values of magnetic field. It shows that 

increase in magnetic field leads to higher concentration. This confirms that a weak 

magnetoconvective force leads to low concentration. The effect of Soret on the concentration 

of the fluid is shown in Figure 10. It is noted that increase in Soret enhances the concentration. 

This is due to increase in thermal diffusion. The profile indicate significant effect on the 

concentration even at minimal increase in the Soret. The influence of the Schmidt number on 

the concentration is indicated in Figure 11.  The profile indicate that increase in the Schmidt 

number increases the concentration. The effect of thermal radiation on concentration is 

depicted in Figure 12. It shows that increase in thermal radiation increases the concentration. 

Figure 13 shows the effect of magnetic field on the skin friction. It is noted that increase in the 

magnetic field decreases the skin friction. Expectedly this is due to the drag at the boundary 

layer. Even with increase in the Reynolds number the effect of the magnetic field remains 

predominant and unchanged. It is shown in Figure 14 that increase in the Eckert number 

increases the heat transfer rate, but this effect is decreased down the line as the Reynolds 

number is increased. Figure 15 shows the effect of the Eckert number on mass transfer. The 

Eckert number increases mass transfer. The Eckert number exerts a domineering influence over 

increase in the Reynolds number. 

    

 
Figure 1: Influence of magnetic field on 

velocity for 𝑀 = 1. 𝐾 = 0.2, 𝜔 = 1, 𝑅𝑒 =
1 
     

 
Figure 2: Influence of Reynolds number on 

velocity for 𝑀 = 1. 𝐾 = 0.2, 𝜔 = 1 

 

  

 
Figure 3: Influence of permeability on 

velocity for 𝑀 = 0.5. 𝑅𝑒 = 1, 𝜔 = 1 

   

 
Figure 4: Influence of magnetic field on the 

temperature for 𝑃𝑟 = 0.71, 𝑁 = 0.5, 𝑡 =
0, 𝐸𝑐 = 0.2, 𝑅𝑒 = 1, 𝐾 = 0.2 
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Figure 5: Influence of Eckert number on the 

temperature for 𝑃𝑟 = 0.71, 𝑁 = 0.5, 𝑡 =
0, 𝑀 = 1, 𝑅𝑒 = 1, 𝐾 = 0.2 
 

 

 
Figure 6: Influence of thermal radiation on 

the temperature for 𝑃𝑟 = 0.71, 𝐸𝑐 =
0.2, 𝑡 = 0, 𝑀 = 1, 𝑅𝑒 = 1, 𝐾 = 0.2 

   

 
Figure 7: Influence of permeability on the 

temperature for 𝑃𝑟 = 0.71, 𝑁 = 0.5, 𝑡 =
0, 𝑀 = 1, 𝑅𝑒 = 1, 𝑁 = 0.5 

 

 

 

 

   
Figure 8: Influence of Prandtl number on 

the temperature for 𝐾 = 0.2, 𝑁 = 0.5, 𝑡 =
0, 𝑀 = 1, 𝑅𝑒 = 1, 𝑁 = 0.5 

 

 

    
Figure 9: Influence of magnetic field on the 

concentration for 𝐾 = 0.2, 𝑁 = 0.5, 𝑡 =
0, 𝑆𝑐 = 0.2, 𝑅𝑒 = 1, 
𝑁 = 0.5, 𝑆𝑜 = 0.3, 𝐸𝑐 = 0.2 

 

  

 
Figure 10: Influence of Soret on the 

concentration for 𝐾 = 0.2, 𝑁 = 0.5, 𝑡 =
0, 𝑀 = 1, 𝑅𝑒 = 1, 
𝑁 = 0.5, 𝑆𝑐 = 0.2, 𝐸𝑐 = 0.2 
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Figure 11: Influence of Schmidt number on 

the concentration for = 0.2, 𝑁 = 0.5, 𝑡 =
0, 𝑀 = 1, 𝑅𝑒 = 1, 𝑁 = 0.5, 𝑆𝑜 =
0.3, 𝐸𝑐 = 0.2 

 

 
Figure 12: Influence of thermal radiation on 

the concentration for = 0.2, 𝑆𝑐 = 0.2, 𝑡 =
0, 𝑀 = 1, 𝑅𝑒 = 1, 𝑁 = 0.5, 𝑆𝑜 =
0.3, 𝐸𝑐 = 0.2 

    

 

   

 
 

Figure 14: Influence of Eckert number and 

Reynolds numberon heat transfer for 𝐾 =
0.2, 𝑁 = 0.5, 𝑡 = 0, 𝑀 = 1, 𝑁 = 0.5 

 

    

 
 

Figure 15: Influence of Eckert number and 

Reynolds number on the concentration for 

𝐾 = 0.2, 𝑁 = 0.5, 𝑡 = 0, 𝑀 = 1, 𝑁 = 0.5, 

𝑆𝑜 = 0.3, 

 

Figure 13: Influence of magnetic field and 

Reynolds number on the skin friction for 

𝐾 = 0.2, 𝜔 = 1, 𝑡 = 0 

 

5. Conclusion 

The problem of heat and mass transfer influenced by magnetic field, thermal radiation and 

viscous dissipation has been formulated and solved. Employing analytical solution to the 

problem and adopting parameter values, we have displayed the results graphically and 

presented the interpretations. Consequently the following conclusion are drawn: 
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(i)    Magnetic field and thermal radiation retard the velocity of the fluid while the permeability 

enhance the velocity 

(ii)   The Eckert number increases the temperature while the Prandtl number decreases it. 

(iii)  Higher magnetic field leads to higher concentration. Increase in Soret, Schmidt number 

and thermal radiation increases the concentration. 

(iv)  Magnetic field decreases the skin friction while the Eckert number increases both heat and 

mass transfer rates. 
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